
6 UNIFORM CIRCULAR MOTION AND GRAVITATION

Figure 6.1 This Australian Grand Prix Formula 1 race car moves in a circular path as it makes the turn. Its wheels also spin rapidly—the latter completing many revolutions, the
former only part of one (a circular arc). The same physical principles are involved in each. (credit: Richard Munckton)

Learning Objectives
6.1. Rotation Angle and Angular Velocity
6.2. Centripetal Acceleration
6.3. Centripetal Force
6.4. Fictitious Forces and Non-inertial Frames: The Coriolis Force
6.5. Newton’s Universal Law of Gravitation
6.6. Satellites and Kepler’s Laws: An Argument for Simplicity

Introduction to Uniform Circular Motion and Gravitation
Many motions, such as the arc of a bird’s flight or Earth’s path around the Sun, are curved. Recall that Newton’s first law tells us that motion is along
a straight line at constant speed unless there is a net external force. We will therefore study not only motion along curves, but also the forces that
cause it, including gravitational forces. In some ways, this chapter is a continuation of Dynamics: Newton's Laws of Motion as we study more
applications of Newton’s laws of motion.

This chapter deals with the simplest form of curved motion, uniform circular motion, motion in a circular path at constant speed. Studying this topic
illustrates most concepts associated with rotational motion and leads to the study of many new topics we group under the name rotation. Pure
rotational motion occurs when points in an object move in circular paths centered on one point. Pure translational motion is motion with no rotation.
Some motion combines both types, such as a rotating hockey puck moving along ice.

6.1 Rotation Angle and Angular Velocity
In Kinematics, we studied motion along a straight line and introduced such concepts as displacement, velocity, and acceleration. Two-Dimensional
Kinematics dealt with motion in two dimensions. Projectile motion is a special case of two-dimensional kinematics in which the object is projected
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into the air, while being subject to the gravitational force, and lands a distance away. In this chapter, we consider situations where the object does not
land but moves in a curve. We begin the study of uniform circular motion by defining two angular quantities needed to describe rotational motion.

Rotation Angle
When objects rotate about some axis—for example, when the CD (compact disc) in Figure 6.2 rotates about its center—each point in the object
follows a circular arc. Consider a line from the center of the CD to its edge. Each pit used to record sound along this line moves through the same
angle in the same amount of time. The rotation angle is the amount of rotation and is analogous to linear distance. We define the rotation angle Δθ
to be the ratio of the arc length to the radius of curvature:

(6.1)Δθ = Δs
r .

Figure 6.2 All points on a CD travel in circular arcs. The pits along a line from the center to the edge all move through the same angle Δθ in a time Δt .

Figure 6.3 The radius of a circle is rotated through an angle Δθ . The arc length Δs is described on the circumference.

The arc length Δs is the distance traveled along a circular path as shown in Figure 6.3 Note that r is the radius of curvature of the circular path.

We know that for one complete revolution, the arc length is the circumference of a circle of radius r . The circumference of a circle is 2πr . Thus for
one complete revolution the rotation angle is

(6.2)Δθ = 2πr
r = 2π.

This result is the basis for defining the units used to measure rotation angles, Δθ to be radians (rad), defined so that

(6.3)2π rad = 1 revolution.
A comparison of some useful angles expressed in both degrees and radians is shown in Table 6.1.
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Table 6.1 Comparison of Angular Units

Degree Measures Radian Measure

30º π
6

60º π
3

90º π
2

120º 2π
3

135º 3π
4

180º π

Figure 6.4 Points 1 and 2 rotate through the same angle ( Δθ ), but point 2 moves through a greater arc length (Δs) because it is at a greater distance from the center of

rotation (r) .

If Δθ = 2π rad, then the CD has made one complete revolution, and every point on the CD is back at its original position. Because there are 360º
in a circle or one revolution, the relationship between radians and degrees is thus

(6.4)2π rad = 360º
so that

(6.5)1 rad = 360º
2π ≈ 57.3º.

Angular Velocity
How fast is an object rotating? We define angular velocity ω as the rate of change of an angle. In symbols, this is

(6.6)ω = Δθ
Δt ,

where an angular rotation Δθ takes place in a time Δt . The greater the rotation angle in a given amount of time, the greater the angular velocity.
The units for angular velocity are radians per second (rad/s).

Angular velocity ω is analogous to linear velocity v . To get the precise relationship between angular and linear velocity, we again consider a pit on

the rotating CD. This pit moves an arc length Δs in a time Δt , and so it has a linear velocity

(6.7)v = Δs
Δt .

From Δθ = Δs
r we see that Δs = rΔθ . Substituting this into the expression for v gives

(6.8)v = rΔθ
Δt = rω.

We write this relationship in two different ways and gain two different insights:

(6.9)v = rω or ω = v
r .
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The first relationship in v = rω or ω = v
r states that the linear velocity v is proportional to the distance from the center of rotation, thus, it is largest

for a point on the rim (largest r ), as you might expect. We can also call this linear speed v of a point on the rim the tangential speed. The second

relationship in v = rω or ω = v
r can be illustrated by considering the tire of a moving car. Note that the speed of a point on the rim of the tire is the

same as the speed v of the car. See Figure 6.5. So the faster the car moves, the faster the tire spins—large v means a large ω , because
v = rω . Similarly, a larger-radius tire rotating at the same angular velocity ( ω ) will produce a greater linear speed ( v ) for the car.

Figure 6.5 A car moving at a velocity v to the right has a tire rotating with an angular velocity ω .The speed of the tread of the tire relative to the axle is v , the same as if
the car were jacked up. Thus the car moves forward at linear velocity v = rω , where r is the tire radius. A larger angular velocity for the tire means a greater velocity for
the car.

Example 6.1 How Fast Does a Car Tire Spin?

Calculate the angular velocity of a 0.300 m radius car tire when the car travels at 15.0 m/s (about 54 km/h ). See Figure 6.5.

Strategy

Because the linear speed of the tire rim is the same as the speed of the car, we have v = 15.0 m/s. The radius of the tire is given to be

r = 0.300 m. Knowing v and r , we can use the second relationship in v = rω, ω = v
r to calculate the angular velocity.

Solution

To calculate the angular velocity, we will use the following relationship:

(6.10)ω = v
r .

Substituting the knowns,

(6.11)ω = 15.0 m/s
0.300 m = 50.0 rad/s.

Discussion

When we cancel units in the above calculation, we get 50.0/s. But the angular velocity must have units of rad/s. Because radians are actually
unitless (radians are defined as a ratio of distance), we can simply insert them into the answer for the angular velocity. Also note that if an earth
mover with much larger tires, say 1.20 m in radius, were moving at the same speed of 15.0 m/s, its tires would rotate more slowly. They would
have an angular velocity

(6.12)ω = (15.0 m/s) / (1.20 m) = 12.5 rad/s.

Both ω and v have directions (hence they are angular and linear velocities, respectively). Angular velocity has only two directions with respect to
the axis of rotation—it is either clockwise or counterclockwise. Linear velocity is tangent to the path, as illustrated in Figure 6.6.

Take-Home Experiment

Tie an object to the end of a string and swing it around in a horizontal circle above your head (swing at your wrist). Maintain uniform speed as the
object swings and measure the angular velocity of the motion. What is the approximate speed of the object? Identify a point close to your hand
and take appropriate measurements to calculate the linear speed at this point. Identify other circular motions and measure their angular
velocities.
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Figure 6.6 As an object moves in a circle, here a fly on the edge of an old-fashioned vinyl record, its instantaneous velocity is always tangent to the circle. The direction of the
angular velocity is clockwise in this case.

PhET Explorations: Ladybug Revolution

Figure 6.7 Ladybug Revolution (http://cnx.org/content/m42083/1.7/rotation_en.jar)

Join the ladybug in an exploration of rotational motion. Rotate the merry-go-round to change its angle, or choose a constant angular velocity or
angular acceleration. Explore how circular motion relates to the bug's x,y position, velocity, and acceleration using vectors or graphs.

6.2 Centripetal Acceleration
We know from kinematics that acceleration is a change in velocity, either in its magnitude or in its direction, or both. In uniform circular motion, the
direction of the velocity changes constantly, so there is always an associated acceleration, even though the magnitude of the velocity might be
constant. You experience this acceleration yourself when you turn a corner in your car. (If you hold the wheel steady during a turn and move at
constant speed, you are in uniform circular motion.) What you notice is a sideways acceleration because you and the car are changing direction. The
sharper the curve and the greater your speed, the more noticeable this acceleration will become. In this section we examine the direction and
magnitude of that acceleration.

Figure 6.8 shows an object moving in a circular path at constant speed. The direction of the instantaneous velocity is shown at two points along the
path. Acceleration is in the direction of the change in velocity, which points directly toward the center of rotation (the center of the circular path). This
pointing is shown with the vector diagram in the figure. We call the acceleration of an object moving in uniform circular motion (resulting from a net
external force) the centripetal acceleration( ac ); centripetal means “toward the center” or “center seeking.”
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Figure 6.8 The directions of the velocity of an object at two different points are shown, and the change in velocity Δv is seen to point directly toward the center of curvature.

(See small inset.) Because ac = Δv / Δt , the acceleration is also toward the center; ac is called centripetal acceleration. (Because Δθ is very small, the arc length

Δs is equal to the chord length Δr for small time differences.)

The direction of centripetal acceleration is toward the center of curvature, but what is its magnitude? Note that the triangle formed by the velocity
vectors and the one formed by the radii r and Δs are similar. Both the triangles ABC and PQR are isosceles triangles (two equal sides). The two
equal sides of the velocity vector triangle are the speeds v1 = v2 = v . Using the properties of two similar triangles, we obtain

(6.13)Δv
v = Δs

r .

Acceleration is Δv / Δt , and so we first solve this expression for Δv :

(6.14)Δv = v
rΔs.

Then we divide this by Δt , yielding

(6.15)Δv
Δt = v

r×Δs
Δt .

Finally, noting that Δv / Δt = ac and that Δs / Δt = v , the linear or tangential speed, we see that the magnitude of the centripetal acceleration is

(6.16)
ac = v2

r ,

which is the acceleration of an object in a circle of radius r at a speed v . So, centripetal acceleration is greater at high speeds and in sharp curves
(smaller radius), as you have noticed when driving a car. But it is a bit surprising that ac is proportional to speed squared, implying, for example, that

it is four times as hard to take a curve at 100 km/h than at 50 km/h. A sharp corner has a small radius, so that ac is greater for tighter turns, as you

have probably noticed.

It is also useful to express ac in terms of angular velocity. Substituting v = rω into the above expression, we find ac = (rω)2 / r = rω2 . We can

express the magnitude of centripetal acceleration using either of two equations:

(6.17)
ac = v2

r ; ac = rω2.

Recall that the direction of ac is toward the center. You may use whichever expression is more convenient, as illustrated in examples below.

A centrifuge (see Figure 6.9b) is a rotating device used to separate specimens of different densities. High centripetal acceleration significantly
decreases the time it takes for separation to occur, and makes separation possible with small samples. Centrifuges are used in a variety of
applications in science and medicine, including the separation of single cell suspensions such as bacteria, viruses, and blood cells from a liquid
medium and the separation of macromolecules, such as DNA and protein, from a solution. Centrifuges are often rated in terms of their centripetal
acceleration relative to acceleration due to gravity (g) ; maximum centripetal acceleration of several hundred thousand g is possible in a vacuum.

Human centrifuges, extremely large centrifuges, have been used to test the tolerance of astronauts to the effects of accelerations larger than that of
Earth’s gravity.
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Example 6.2 How Does the Centripetal Acceleration of a Car Around a Curve Compare with That Due to
Gravity?

What is the magnitude of the centripetal acceleration of a car following a curve of radius 500 m at a speed of 25.0 m/s (about 90 km/h)?
Compare the acceleration with that due to gravity for this fairly gentle curve taken at highway speed. See Figure 6.9(a).

Strategy

Because v and r are given, the first expression in ac = v2
r ; ac = rω2 is the most convenient to use.

Solution

Entering the given values of v = 25.0 m/s and r = 500 m into the first expression for ac gives

(6.18)
ac = v2

r = (25.0 m/s)2

500 m = 1.25 m/s2.

Discussion

To compare this with the acceleration due to gravity (g = 9.80 m/s2) , we take the ratio of ac / g = ⎛⎝1.25 m/s2⎞⎠ /
⎛
⎝9.80 m/s2⎞⎠ = 0.128 . Thus,

ac = 0.128 g and is noticeable especially if you were not wearing a seat belt.

Figure 6.9 (a) The car following a circular path at constant speed is accelerated perpendicular to its velocity, as shown. The magnitude of this centripetal acceleration is found
in Example 6.2. (b) A particle of mass in a centrifuge is rotating at constant angular velocity . It must be accelerated perpendicular to its velocity or it would continue in a
straight line. The magnitude of the necessary acceleration is found in Example 6.3.

Example 6.3 How Big Is the Centripetal Acceleration in an Ultracentrifuge?

Calculate the centripetal acceleration of a point 7.50 cm from the axis of an ultracentrifuge spinning at 7.5 × 104 rev/min. Determine the
ratio of this acceleration to that due to gravity. See Figure 6.9(b).

Strategy
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The term rev/min stands for revolutions per minute. By converting this to radians per second, we obtain the angular velocity ω . Because r is

given, we can use the second expression in the equation ac = v2
r ; ac = rω2 to calculate the centripetal acceleration.

Solution

To convert 7.50×104 rev / min to radians per second, we use the facts that one revolution is 2πrad and one minute is 60.0 s. Thus,

(6.19)ω = 7.50×104 rev
min×2π rad

1 rev × 1 min
60.0 s = 7854 rad/s.

Now the centripetal acceleration is given by the second expression in ac = v2
r ; ac = rω2 as

(6.20)ac = rω2.

Converting 7.50 cm to meters and substituting known values gives

(6.21)ac = (0.0750 m)(7854 rad/s)2 = 4.63×106 m/s2.

Note that the unitless radians are discarded in order to get the correct units for centripetal acceleration. Taking the ratio of ac to g yields

(6.22)ac
g = 4.63×106

9.80 = 4.72×105.

Discussion

This last result means that the centripetal acceleration is 472,000 times as strong as g . It is no wonder that such high ω centrifuges are called

ultracentrifuges. The extremely large accelerations involved greatly decrease the time needed to cause the sedimentation of blood cells or other
materials.

Of course, a net external force is needed to cause any acceleration, just as Newton proposed in his second law of motion. So a net external force is
needed to cause a centripetal acceleration. In Centripetal Force, we will consider the forces involved in circular motion.

PhET Explorations: Ladybug Motion 2D

Learn about position, velocity and acceleration vectors. Move the ladybug by setting the position, velocity or acceleration, and see how the
vectors change. Choose linear, circular or elliptical motion, and record and playback the motion to analyze the behavior.

Figure 6.10 Ladybug Motion 2D (http://cnx.org/content/m42084/1.7/ladybug-motion-2d_en.jar)

6.3 Centripetal Force
Any force or combination of forces can cause a centripetal or radial acceleration. Just a few examples are the tension in the rope on a tether ball, the
force of Earth’s gravity on the Moon, friction between roller skates and a rink floor, a banked roadway’s force on a car, and forces on the tube of a
spinning centrifuge.

Any net force causing uniform circular motion is called a centripetal force. The direction of a centripetal force is toward the center of curvature, the
same as the direction of centripetal acceleration. According to Newton’s second law of motion, net force is mass times acceleration: net F = ma .

For uniform circular motion, the acceleration is the centripetal acceleration— a = ac . Thus, the magnitude of centripetal force Fc is

(6.23)Fc = mac.

By using the expressions for centripetal acceleration ac from ac = v2
r ; ac = rω2 , we get two expressions for the centripetal force Fc in terms of

mass, velocity, angular velocity, and radius of curvature:

(6.24)
Fc = mv2

r ; Fc = mrω2.

You may use whichever expression for centripetal force is more convenient. Centripetal force Fc is always perpendicular to the path and pointing to

the center of curvature, because ac is perpendicular to the velocity and pointing to the center of curvature.

Note that if you solve the first expression for r , you get
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(6.25)
r = mv2

Fc
.

This implies that for a given mass and velocity, a large centripetal force causes a small radius of curvature—that is, a tight curve.

Figure 6.11 The frictional force supplies the centripetal force and is numerically equal to it. Centripetal force is perpendicular to velocity and causes uniform circular motion.
The larger the Fc , the smaller the radius of curvature r and the sharper the curve. The second curve has the same v , but a larger Fc produces a smaller r′ .

Example 6.4 What Coefficient of Friction Do Car Tires Need on a Flat Curve?

(a) Calculate the centripetal force exerted on a 900 kg car that negotiates a 500 m radius curve at 25.0 m/s.

(b) Assuming an unbanked curve, find the minimum static coefficient of friction, between the tires and the road, static friction being the reason
that keeps the car from slipping (see Figure 6.12).

Strategy and Solution for (a)

We know that Fc = mv2
r . Thus,

(6.26)
Fc = mv2

r = (900 kg)(25.0 m/s)2

(500 m) = 1125 N.

Strategy for (b)

Figure 6.12 shows the forces acting on the car on an unbanked (level ground) curve. Friction is to the left, keeping the car from slipping, and
because it is the only horizontal force acting on the car, the friction is the centripetal force in this case. We know that the maximum static friction
(at which the tires roll but do not slip) is μs N , where μs is the static coefficient of friction and N is the normal force. The normal force equals

the car’s weight on level ground, so that N = mg . Thus the centripetal force in this situation is

(6.27)Fc = f = μsN = μsmg.

Now we have a relationship between centripetal force and the coefficient of friction. Using the first expression for Fc from the equation

(6.28)

Fc = mv2
r

Fc = mrω2

⎫
⎭
⎬,

(6.29)
mv2

r = μsmg.

We solve this for μs , noting that mass cancels, and obtain

(6.30)
μs = v2

rg .

Solution for (b)
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Substituting the knowns,

(6.31)
μs = (25.0 m/s)2

(500 m)(9.80 m/s2)
= 0.13.

(Because coefficients of friction are approximate, the answer is given to only two digits.)

Discussion

We could also solve part (a) using the first expression in Fc = mv2
r

Fc = mrω2

⎫
⎭
⎬, because m, v, and r are given. The coefficient of friction found in

part (b) is much smaller than is typically found between tires and roads. The car will still negotiate the curve if the coefficient is greater than 0.13,
because static friction is a responsive force, being able to assume a value less than but no more than μs N . A higher coefficient would also

allow the car to negotiate the curve at a higher speed, but if the coefficient of friction is less, the safe speed would be less than 25 m/s. Note that
mass cancels, implying that in this example, it does not matter how heavily loaded the car is to negotiate the turn. Mass cancels because friction
is assumed proportional to the normal force, which in turn is proportional to mass. If the surface of the road were banked, the normal force would
be less as will be discussed below.

Figure 6.12 This car on level ground is moving away and turning to the left. The centripetal force causing the car to turn in a circular path is due to friction between the tires
and the road. A minimum coefficient of friction is needed, or the car will move in a larger-radius curve and leave the roadway.

Let us now consider banked curves, where the slope of the road helps you negotiate the curve. See Figure 6.13. The greater the angle θ , the
faster you can take the curve. Race tracks for bikes as well as cars, for example, often have steeply banked curves. In an “ideally banked curve,” the
angle θ is such that you can negotiate the curve at a certain speed without the aid of friction between the tires and the road. We will derive an

expression for θ for an ideally banked curve and consider an example related to it.

For ideal banking, the net external force equals the horizontal centripetal force in the absence of friction. The components of the normal force N in
the horizontal and vertical directions must equal the centripetal force and the weight of the car, respectively. In cases in which forces are not parallel,
it is most convenient to consider components along perpendicular axes—in this case, the vertical and horizontal directions.

Figure 6.13 shows a free body diagram for a car on a frictionless banked curve. If the angle θ is ideal for the speed and radius, then the net external

force will equal the necessary centripetal force. The only two external forces acting on the car are its weight w and the normal force of the road N .
(A frictionless surface can only exert a force perpendicular to the surface—that is, a normal force.) These two forces must add to give a net external

force that is horizontal toward the center of curvature and has magnitude mv2 /r . Because this is the crucial force and it is horizontal, we use a
coordinate system with vertical and horizontal axes. Only the normal force has a horizontal component, and so this must equal the centripetal
force—that is,

(6.32)
N sin θ = mv2

r .

Because the car does not leave the surface of the road, the net vertical force must be zero, meaning that the vertical components of the two external
forces must be equal in magnitude and opposite in direction. From the figure, we see that the vertical component of the normal force is N cos θ ,
and the only other vertical force is the car’s weight. These must be equal in magnitude; thus,

(6.33)N cos θ = mg.
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Now we can combine the last two equations to eliminate N and get an expression for θ , as desired. Solving the second equation for

N = mg / (cos θ) , and substituting this into the first yields

(6.34)
mg sin θ

cos θ = mv2
r

(6.35)
mg tan(θ) = mv2

r

tan θ = v2
rg.

Taking the inverse tangent gives

(6.36)
θ = tan−1⎛⎝v

2
rg
⎞
⎠ (ideally banked curve, no friction).

This expression can be understood by considering how θ depends on v and r . A large θ will be obtained for a large v and a small r . That is,
roads must be steeply banked for high speeds and sharp curves. Friction helps, because it allows you to take the curve at greater or lower speed
than if the curve is frictionless. Note that θ does not depend on the mass of the vehicle.

Figure 6.13 The car on this banked curve is moving away and turning to the left.

Example 6.5 What Is the Ideal Speed to Take a Steeply Banked Tight Curve?

Curves on some test tracks and race courses, such as the Daytona International Speedway in Florida, are very steeply banked. This banking,
with the aid of tire friction and very stable car configurations, allows the curves to be taken at very high speed. To illustrate, calculate the speed at
which a 100 m radius curve banked at 65.0° should be driven if the road is frictionless.

Strategy

We first note that all terms in the expression for the ideal angle of a banked curve except for speed are known; thus, we need only rearrange it so
that speed appears on the left-hand side and then substitute known quantities.

Solution

Starting with

(6.37)
tan θ = v2

rg

we get

(6.38)v = (rg tan θ)1 / 2.

Noting that tan 65.0º = 2.14, we obtain

(6.39)
v = ⎡

⎣(100 m)(9.80 m/s2)(2.14)⎤⎦
1 / 2

= 45.8 m/s.
Discussion

This is just about 165 km/h, consistent with a very steeply banked and rather sharp curve. Tire friction enables a vehicle to take the curve at
significantly higher speeds.

Calculations similar to those in the preceding examples can be performed for a host of interesting situations in which centripetal force is
involved—a number of these are presented in this chapter’s Problems and Exercises.
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Take-Home Experiment

Ask a friend or relative to swing a golf club or a tennis racquet. Take appropriate measurements to estimate the centripetal acceleration of the
end of the club or racquet. You may choose to do this in slow motion.

PhET Explorations: Gravity and Orbits

Move the sun, earth, moon and space station to see how it affects their gravitational forces and orbital paths. Visualize the sizes and distances
between different heavenly bodies, and turn off gravity to see what would happen without it!

Figure 6.14 Gravity and Orbits (http://cnx.org/content/m42086/1.9/gravity-and-orbits_en.jar)

6.4 Fictitious Forces and Non-inertial Frames: The Coriolis Force
What do taking off in a jet airplane, turning a corner in a car, riding a merry-go-round, and the circular motion of a tropical cyclone have in common?
Each exhibits fictitious forces—unreal forces that arise from motion and may seem real, because the observer’s frame of reference is accelerating or
rotating.

When taking off in a jet, most people would agree it feels as if you are being pushed back into the seat as the airplane accelerates down the runway.
Yet a physicist would say that you tend to remain stationary while the seat pushes forward on you, and there is no real force backward on you. An
even more common experience occurs when you make a tight curve in your car—say, to the right. You feel as if you are thrown (that is, forced)
toward the left relative to the car. Again, a physicist would say that you are going in a straight line but the car moves to the right, and there is no real
force on you to the left. Recall Newton’s first law.

Figure 6.15 (a) The car driver feels herself forced to the left relative to the car when she makes a right turn. This is a fictitious force arising from the use of the car as a frame of
reference. (b) In the Earth’s frame of reference, the driver moves in a straight line, obeying Newton’s first law, and the car moves to the right. There is no real force to the left
on the driver relative to Earth. There is a real force to the right on the car to make it turn.

We can reconcile these points of view by examining the frames of reference used. Let us concentrate on people in a car. Passengers instinctively use
the car as a frame of reference, while a physicist uses Earth. The physicist chooses Earth because it is very nearly an inertial frame of
reference—one in which all forces are real (that is, in which all forces have an identifiable physical origin). In such a frame of reference, Newton’s
laws of motion take the form given in Dynamics: Newton's Laws of Motion The car is a non-inertial frame of reference because it is accelerated
to the side. The force to the left sensed by car passengers is a fictitious force having no physical origin. There is nothing real pushing them left—the
car, as well as the driver, is actually accelerating to the right.

Let us now take a mental ride on a merry-go-round—specifically, a rapidly rotating playground merry-go-round. You take the merry-go-round to be
your frame of reference because you rotate together. In that non-inertial frame, you feel a fictitious force, named centrifugal force (not to be
confused with centripetal force), trying to throw you off. You must hang on tightly to counteract the centrifugal force. In Earth’s frame of reference,
there is no force trying to throw you off. Rather you must hang on to make yourself go in a circle because otherwise you would go in a straight line,
right off the merry-go-round.
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Figure 6.16 (a) A rider on a merry-go-round feels as if he is being thrown off. This fictitious force is called the centrifugal force—it explains the rider’s motion in the rotating
frame of reference. (b) In an inertial frame of reference and according to Newton’s laws, it is his inertia that carries him off and not a real force (the unshaded rider has
Fnet = 0 and heads in a straight line). A real force, Fcentripetal , is needed to cause a circular path.

This inertial effect, carrying you away from the center of rotation if there is no centripetal force to cause circular motion, is put to good use in
centrifuges (see Figure 6.17). A centrifuge spins a sample very rapidly, as mentioned earlier in this chapter. Viewed from the rotating frame of
reference, the fictitious centrifugal force throws particles outward, hastening their sedimentation. The greater the angular velocity, the greater the
centrifugal force. But what really happens is that the inertia of the particles carries them along a line tangent to the circle while the test tube is forced
in a circular path by a centripetal force.

Figure 6.17 Centrifuges use inertia to perform their task. Particles in the fluid sediment come out because their inertia carries them away from the center of rotation. The large
angular velocity of the centrifuge quickens the sedimentation. Ultimately, the particles will come into contact with the test tube walls, which will then supply the centripetal force
needed to make them move in a circle of constant radius.

Let us now consider what happens if something moves in a frame of reference that rotates. For example, what if you slide a ball directly away from
the center of the merry-go-round, as shown in Figure 6.18? The ball follows a straight path relative to Earth (assuming negligible friction) and a path
curved to the right on the merry-go-round’s surface. A person standing next to the merry-go-round sees the ball moving straight and the merry-go-
round rotating underneath it. In the merry-go-round’s frame of reference, we explain the apparent curve to the right by using a fictitious force, called
the Coriolis force, that causes the ball to curve to the right. The fictitious Coriolis force can be used by anyone in that frame of reference to explain
why objects follow curved paths and allows us to apply Newton’s Laws in non-inertial frames of reference.
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Figure 6.18 Looking down on the counterclockwise rotation of a merry-go-round, we see that a ball slid straight toward the edge follows a path curved to the right. The person
slides the ball toward point B, starting at point A. Both points rotate to the shaded positions (A’ and B’) shown in the time that the ball follows the curved path in the rotating
frame and a straight path in Earth’s frame.

Up until now, we have considered Earth to be an inertial frame of reference with little or no worry about effects due to its rotation. Yet such effects do
exist—in the rotation of weather systems, for example. Most consequences of Earth’s rotation can be qualitatively understood by analogy with the
merry-go-round. Viewed from above the North Pole, Earth rotates counterclockwise, as does the merry-go-round in Figure 6.18. As on the merry-go-
round, any motion in Earth’s northern hemisphere experiences a Coriolis force to the right. Just the opposite occurs in the southern hemisphere;
there, the force is to the left. Because Earth’s angular velocity is small, the Coriolis force is usually negligible, but for large-scale motions, such as
wind patterns, it has substantial effects.

The Coriolis force causes hurricanes in the northern hemisphere to rotate in the counterclockwise direction, while the tropical cyclones (what
hurricanes are called below the equator) in the southern hemisphere rotate in the clockwise direction. The terms hurricane, typhoon, and tropical
storm are regionally-specific names for tropical cyclones, storm systems characterized by low pressure centers, strong winds, and heavy rains.
Figure 6.19 helps show how these rotations take place. Air flows toward any region of low pressure, and tropical cyclones contain particularly low
pressures. Thus winds flow toward the center of a tropical cyclone or a low-pressure weather system at the surface. In the northern hemisphere,
these inward winds are deflected to the right, as shown in the figure, producing a counterclockwise circulation at the surface for low-pressure zones
of any type. Low pressure at the surface is associated with rising air, which also produces cooling and cloud formation, making low-pressure patterns
quite visible from space. Conversely, wind circulation around high-pressure zones is clockwise in the northern hemisphere but is less visible because
high pressure is associated with sinking air, producing clear skies.

The rotation of tropical cyclones and the path of a ball on a merry-go-round can just as well be explained by inertia and the rotation of the system
underneath. When non-inertial frames are used, fictitious forces, such as the Coriolis force, must be invented to explain the curved path. There is no
identifiable physical source for these fictitious forces. In an inertial frame, inertia explains the path, and no force is found to be without an identifiable
source. Either view allows us to describe nature, but a view in an inertial frame is the simplest and truest, in the sense that all forces have real origins
and explanations.
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Figure 6.19 (a) The counterclockwise rotation of this northern hemisphere hurricane is a major consequence of the Coriolis force. (credit: NASA) (b) Without the Coriolis force,
air would flow straight into a low-pressure zone, such as that found in tropical cyclones. (c) The Coriolis force deflects the winds to the right, producing a counterclockwise
rotation. (d) Wind flowing away from a high-pressure zone is also deflected to the right, producing a clockwise rotation. (e) The opposite direction of rotation is produced by the
Coriolis force in the southern hemisphere, leading to tropical cyclones. (credit: NASA)

6.5 Newton’s Universal Law of Gravitation
What do aching feet, a falling apple, and the orbit of the Moon have in common? Each is caused by the gravitational force. Our feet are strained by
supporting our weight—the force of Earth’s gravity on us. An apple falls from a tree because of the same force acting a few meters above Earth’s
surface. And the Moon orbits Earth because gravity is able to supply the necessary centripetal force at a distance of hundreds of millions of meters.
In fact, the same force causes planets to orbit the Sun, stars to orbit the center of the galaxy, and galaxies to cluster together. Gravity is another
example of underlying simplicity in nature. It is the weakest of the four basic forces found in nature, and in some ways the least understood. It is a
force that acts at a distance, without physical contact, and is expressed by a formula that is valid everywhere in the universe, for masses and
distances that vary from the tiny to the immense.

Sir Isaac Newton was the first scientist to precisely define the gravitational force, and to show that it could explain both falling bodies and
astronomical motions. See Figure 6.20. But Newton was not the first to suspect that the same force caused both our weight and the motion of
planets. His forerunner Galileo Galilei had contended that falling bodies and planetary motions had the same cause. Some of Newton’s
contemporaries, such as Robert Hooke, Christopher Wren, and Edmund Halley, had also made some progress toward understanding gravitation. But
Newton was the first to propose an exact mathematical form and to use that form to show that the motion of heavenly bodies should be conic
sections—circles, ellipses, parabolas, and hyperbolas. This theoretical prediction was a major triumph—it had been known for some time that moons,
planets, and comets follow such paths, but no one had been able to propose a mechanism that caused them to follow these paths and not others.
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Figure 6.20 According to early accounts, Newton was inspired to make the connection between falling bodies and astronomical motions when he saw an apple fall from a tree
and realized that if the gravitational force could extend above the ground to a tree, it might also reach the Sun. The inspiration of Newton’s apple is a part of worldwide folklore
and may even be based in fact. Great importance is attached to it because Newton’s universal law of gravitation and his laws of motion answered very old questions about
nature and gave tremendous support to the notion of underlying simplicity and unity in nature. Scientists still expect underlying simplicity to emerge from their ongoing inquiries
into nature.

The gravitational force is relatively simple. It is always attractive, and it depends only on the masses involved and the distance between them. Stated
in modern language, Newton’s universal law of gravitation states that every particle in the universe attracts every other particle with a force along
a line joining them. The force is directly proportional to the product of their masses and inversely proportional to the square of the distance between
them.

Figure 6.21 Gravitational attraction is along a line joining the centers of mass of these two bodies. The magnitude of the force is the same on each, consistent with Newton’s
third law.

Misconception Alert

The magnitude of the force on each object (one has larger mass than the other) is the same, consistent with Newton’s third law.

The bodies we are dealing with tend to be large. To simplify the situation we assume that the body acts as if its entire mass is concentrated at one
specific point called the center of mass (CM), which will be further explored in Linear Momentum and Collisions. For two bodies having masses
m and M with a distance r between their centers of mass, the equation for Newton’s universal law of gravitation is

(6.40)F = GmM
r2 ,
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where F is the magnitude of the gravitational force and G is a proportionality factor called the gravitational constant. G is a universal
gravitational constant—that is, it is thought to be the same everywhere in the universe. It has been measured experimentally to be

(6.41)
G = 6.673×10−11N ⋅ m2

kg2

in SI units. Note that the units of G are such that a force in newtons is obtained from F = GmM
r2 , when considering masses in kilograms and

distance in meters. For example, two 1.000 kg masses separated by 1.000 m will experience a gravitational attraction of 6.673×10−11 N . This is
an extraordinarily small force. The small magnitude of the gravitational force is consistent with everyday experience. We are unaware that even large
objects like mountains exert gravitational forces on us. In fact, our body weight is the force of attraction of the entire Earth on us with a mass of

6×1024 kg .

Recall that the acceleration due to gravity g is about 9.80 m/s2 on Earth. We can now determine why this is so. The weight of an object mg is the

gravitational force between it and Earth. Substituting mg for F in Newton’s universal law of gravitation gives

(6.42)mg = GmM
r2 ,

where m is the mass of the object, M is the mass of Earth, and r is the distance to the center of Earth (the distance between the centers of mass
of the object and Earth). See Figure 6.22. The mass m of the object cancels, leaving an equation for g :

(6.43)g = GM
r2.

Substituting known values for Earth’s mass and radius (to three significant figures),

(6.44)
g =
⎛
⎝
⎜6.67×10−11N ⋅ m2

kg2

⎞
⎠
⎟× 5.98×1024 kg

(6.38×106 m)2,

and we obtain a value for the acceleration of a falling body:

(6.45)g = 9.80 m/s2.

Figure 6.22 The distance between the centers of mass of Earth and an object on its surface is very nearly the same as the radius of Earth, because Earth is so much larger
than the object.

This is the expected value and is independent of the body’s mass. Newton’s law of gravitation takes Galileo’s observation that all masses fall with the
same acceleration a step further, explaining the observation in terms of a force that causes objects to fall—in fact, in terms of a universally existing
force of attraction between masses.

Take-Home Experiment

Take a marble, a ball, and a spoon and drop them from the same height. Do they hit the floor at the same time? If you drop a piece of paper as
well, does it behave like the other objects? Explain your observations.

Making Connections

Attempts are still being made to understand the gravitational force. As we shall see in Particle Physics, modern physics is exploring the
connections of gravity to other forces, space, and time. General relativity alters our view of gravitation, leading us to think of gravitation as
bending space and time.

In the following example, we make a comparison similar to one made by Newton himself. He noted that if the gravitational force caused the Moon to
orbit Earth, then the acceleration due to gravity should equal the centripetal acceleration of the Moon in its orbit. Newton found that the two
accelerations agreed “pretty nearly.”
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Example 6.6 Earth’s Gravitational Force Is the Centripetal Force Making the Moon Move in a Curved Path

(a) Find the acceleration due to Earth’s gravity at the distance of the Moon.

(b) Calculate the centripetal acceleration needed to keep the Moon in its orbit (assuming a circular orbit about a fixed Earth), and compare it with
the value of the acceleration due to Earth’s gravity that you have just found.

Strategy for (a)

This calculation is the same as the one finding the acceleration due to gravity at Earth’s surface, except that r is the distance from the center of

Earth to the center of the Moon. The radius of the Moon’s nearly circular orbit is 3.84×108 m .

Solution for (a)

Substituting known values into the expression for g found above, remembering that M is the mass of Earth not the Moon, yields

(6.46)
g = GM

r2 =
⎛
⎝
⎜6.67×10−11N ⋅ m2

kg2

⎞
⎠
⎟× 5.98×1024 kg

(3.84×108 m)2

= 2.70×10−3 m/s.2

Strategy for (b)

Centripetal acceleration can be calculated using either form of

(6.47)

ac = v2
r

ac = rω2

⎫
⎭
⎬.

We choose to use the second form:

(6.48)ac = rω2,

where ω is the angular velocity of the Moon about Earth.

Solution for (b)

Given that the period (the time it takes to make one complete rotation) of the Moon’s orbit is 27.3 days, (d) and using

(6.49)1 d×24hr
d ×60min

hr ×60 s
min = 86,400 s

we see that

(6.50)ω = Δθ
Δt = 2π rad

(27.3 d)(86,400 s/d) = 2.66×10−6rad
s .

The centripetal acceleration is

(6.51)ac = rω2 = (3.84×108 m)(2.66×10−6 rad/s)2

= 2.72×10−3 m/s.2

The direction of the acceleration is toward the center of the Earth.

Discussion

The centripetal acceleration of the Moon found in (b) differs by less than 1% from the acceleration due to Earth’s gravity found in (a). This
agreement is approximate because the Moon’s orbit is slightly elliptical, and Earth is not stationary (rather the Earth-Moon system rotates about
its center of mass, which is located some 1700 km below Earth’s surface). The clear implication is that Earth’s gravitational force causes the
Moon to orbit Earth.

Why does Earth not remain stationary as the Moon orbits it? This is because, as expected from Newton’s third law, if Earth exerts a force on the
Moon, then the Moon should exert an equal and opposite force on Earth (see Figure 6.23). We do not sense the Moon’s effect on Earth’s motion,
because the Moon’s gravity moves our bodies right along with Earth but there are other signs on Earth that clearly show the effect of the Moon’s
gravitational force as discussed in Satellites and Kepler's Laws: An Argument for Simplicity.
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Figure 6.23 (a) Earth and the Moon rotate approximately once a month around their common center of mass. (b) Their center of mass orbits the Sun in an elliptical orbit, but
Earth’s path around the Sun has “wiggles” in it. Similar wiggles in the paths of stars have been observed and are considered direct evidence of planets orbiting those stars.
This is important because the planets’ reflected light is often too dim to be observed.

Tides
Ocean tides are one very observable result of the Moon’s gravity acting on Earth. Figure 6.24 is a simplified drawing of the Moon’s position relative to
the tides. Because water easily flows on Earth’s surface, a high tide is created on the side of Earth nearest to the Moon, where the Moon’s
gravitational pull is strongest. Why is there also a high tide on the opposite side of Earth? The answer is that Earth is pulled toward the Moon more
than the water on the far side, because Earth is closer to the Moon. So the water on the side of Earth closest to the Moon is pulled away from Earth,
and Earth is pulled away from water on the far side. As Earth rotates, the tidal bulge (an effect of the tidal forces between an orbiting natural satellite
and the primary planet that it orbits) keeps its orientation with the Moon. Thus there are two tides per day (the actual tidal period is about 12 hours
and 25.2 minutes), because the Moon moves in its orbit each day as well).

Figure 6.24 The Moon causes ocean tides by attracting the water on the near side more than Earth, and by attracting Earth more than the water on the far side. The distances
and sizes are not to scale. For this simplified representation of the Earth-Moon system, there are two high and two low tides per day at any location, because Earth rotates
under the tidal bulge.

The Sun also affects tides, although it has about half the effect of the Moon. However, the largest tides, called spring tides, occur when Earth, the
Moon, and the Sun are aligned. The smallest tides, called neap tides, occur when the Sun is at a 90º angle to the Earth-Moon alignment.

Figure 6.25 (a, b) Spring tides: The highest tides occur when Earth, the Moon, and the Sun are aligned. (c) Neap tide: The lowest tides occur when the Sun lies at 90º to the
Earth-Moon alignment. Note that this figure is not drawn to scale.
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Tides are not unique to Earth but occur in many astronomical systems. The most extreme tides occur where the gravitational force is the strongest
and varies most rapidly, such as near black holes (see Figure 6.26). A few likely candidates for black holes have been observed in our galaxy. These
have masses greater than the Sun but have diameters only a few kilometers across. The tidal forces near them are so great that they can actually
tear matter from a companion star.

Figure 6.26 A black hole is an object with such strong gravity that not even light can escape it. This black hole was created by the supernova of one star in a two-star system.
The tidal forces created by the black hole are so great that it tears matter from the companion star. This matter is compressed and heated as it is sucked into the black hole,
creating light and X-rays observable from Earth.

”Weightlessness” and Microgravity
In contrast to the tremendous gravitational force near black holes is the apparent gravitational field experienced by astronauts orbiting Earth. What is
the effect of “weightlessness” upon an astronaut who is in orbit for months? Or what about the effect of weightlessness upon plant growth?
Weightlessness doesn’t mean that an astronaut is not being acted upon by the gravitational force. There is no “zero gravity” in an astronaut’s orbit.
The term just means that the astronaut is in free-fall, accelerating with the acceleration due to gravity. If an elevator cable breaks, the passengers
inside will be in free fall and will experience weightlessness. You can experience short periods of weightlessness in some rides in amusement parks.

Figure 6.27 Astronauts experiencing weightlessness on board the International Space Station. (credit: NASA)

Microgravity refers to an environment in which the apparent net acceleration of a body is small compared with that produced by Earth at its surface.
Many interesting biology and physics topics have been studied over the past three decades in the presence of microgravity. Of immediate concern is
the effect on astronauts of extended times in outer space, such as at the International Space Station. Researchers have observed that muscles will
atrophy (waste away) in this environment. There is also a corresponding loss of bone mass. Study continues on cardiovascular adaptation to space
flight. On Earth, blood pressure is usually higher in the feet than in the head, because the higher column of blood exerts a downward force on it, due
to gravity. When standing, 70% of your blood is below the level of the heart, while in a horizontal position, just the opposite occurs. What difference
does the absence of this pressure differential have upon the heart?

Some findings in human physiology in space can be clinically important to the management of diseases back on Earth. On a somewhat negative
note, spaceflight is known to affect the human immune system, possibly making the crew members more vulnerable to infectious diseases.
Experiments flown in space also have shown that some bacteria grow faster in microgravity than they do on Earth. However, on a positive note,
studies indicate that microbial antibiotic production can increase by a factor of two in space-grown cultures. One hopes to be able to understand
these mechanisms so that similar successes can be achieved on the ground. In another area of physics space research, inorganic crystals and
protein crystals have been grown in outer space that have much higher quality than any grown on Earth, so crystallography studies on their structure
can yield much better results.

Plants have evolved with the stimulus of gravity and with gravity sensors. Roots grow downward and shoots grow upward. Plants might be able to
provide a life support system for long duration space missions by regenerating the atmosphere, purifying water, and producing food. Some studies
have indicated that plant growth and development are not affected by gravity, but there is still uncertainty about structural changes in plants grown in
a microgravity environment.
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The Cavendish Experiment: Then and Now

As previously noted, the universal gravitational constant G is determined experimentally. This definition was first done accurately by Henry
Cavendish (1731–1810), an English scientist, in 1798, more than 100 years after Newton published his universal law of gravitation. The
measurement of G is very basic and important because it determines the strength of one of the four forces in nature. Cavendish’s experiment was
very difficult because he measured the tiny gravitational attraction between two ordinary-sized masses (tens of kilograms at most), using apparatus
like that in Figure 6.28. Remarkably, his value for G differs by less than 1% from the best modern value.

One important consequence of knowing G was that an accurate value for Earth’s mass could finally be obtained. This was done by measuring the

acceleration due to gravity as accurately as possible and then calculating the mass of Earth M from the relationship Newton’s universal law of
gravitation gives

(6.52)mg = GmM
r2 ,

where m is the mass of the object, M is the mass of Earth, and r is the distance to the center of Earth (the distance between the centers of mass
of the object and Earth). See Figure 6.21. The mass m of the object cancels, leaving an equation for g :

(6.53)g = GM
r2.

Rearranging to solve for M yields

(6.54)
M = gr2

G .

So M can be calculated because all quantities on the right, including the radius of Earth r , are known from direct measurements. We shall see in

Satellites and Kepler's Laws: An Argument for Simplicity that knowing G also allows for the determination of astronomical masses. Interestingly,

of all the fundamental constants in physics, G is by far the least well determined.

The Cavendish experiment is also used to explore other aspects of gravity. One of the most interesting questions is whether the gravitational force
depends on substance as well as mass—for example, whether one kilogram of lead exerts the same gravitational pull as one kilogram of water. A
Hungarian scientist named Roland von Eötvös pioneered this inquiry early in the 20th century. He found, with an accuracy of five parts per billion, that
the gravitational force does not depend on the substance. Such experiments continue today, and have improved upon Eötvös’ measurements.
Cavendish-type experiments such as those of Eric Adelberger and others at the University of Washington, have also put severe limits on the
possibility of a fifth force and have verified a major prediction of general relativity—that gravitational energy contributes to rest mass. Ongoing
measurements there use a torsion balance and a parallel plate (not spheres, as Cavendish used) to examine how Newton’s law of gravitation works
over sub-millimeter distances. On this small-scale, do gravitational effects depart from the inverse square law? So far, no deviation has been
observed.

Figure 6.28 Cavendish used an apparatus like this to measure the gravitational attraction between the two suspended spheres ( m ) and the two on the stand ( M ) by
observing the amount of torsion (twisting) created in the fiber. Distance between the masses can be varied to check the dependence of the force on distance. Modern
experiments of this type continue to explore gravity.

6.6 Satellites and Kepler’s Laws: An Argument for Simplicity
Examples of gravitational orbits abound. Hundreds of artificial satellites orbit Earth together with thousands of pieces of debris. The Moon’s orbit
about Earth has intrigued humans from time immemorial. The orbits of planets, asteroids, meteors, and comets about the Sun are no less interesting.
If we look further, we see almost unimaginable numbers of stars, galaxies, and other celestial objects orbiting one another and interacting through
gravity.

All these motions are governed by gravitational force, and it is possible to describe them to various degrees of precision. Precise descriptions of
complex systems must be made with large computers. However, we can describe an important class of orbits without the use of computers, and we
shall find it instructive to study them. These orbits have the following characteristics:
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1. A small mass m orbits a much larger mass M . This allows us to view the motion as if M were stationary—in fact, as if from an inertial frame

of reference placed on M —without significant error. Mass m is the satellite of M , if the orbit is gravitationally bound.

2. The system is isolated from other masses. This allows us to neglect any small effects due to outside masses.

The conditions are satisfied, to good approximation, by Earth’s satellites (including the Moon), by objects orbiting the Sun, and by the satellites of
other planets. Historically, planets were studied first, and there is a classical set of three laws, called Kepler’s laws of planetary motion, that describe
the orbits of all bodies satisfying the two previous conditions (not just planets in our solar system). These descriptive laws are named for the German
astronomer Johannes Kepler (1571–1630), who devised them after careful study (over some 20 years) of a large amount of meticulously recorded
observations of planetary motion done by Tycho Brahe (1546–1601). Such careful collection and detailed recording of methods and data are
hallmarks of good science. Data constitute the evidence from which new interpretations and meanings can be constructed.

Kepler’s Laws of Planetary Motion
Kepler’s First Law

The orbit of each planet about the Sun is an ellipse with the Sun at one focus.

Figure 6.29 (a) An ellipse is a closed curve such that the sum of the distances from a point on the curve to the two foci ( f1 and f2 ) is a constant. You can draw an ellipse

as shown by putting a pin at each focus, and then placing a string around a pencil and the pins and tracing a line on paper. A circle is a special case of an ellipse in which the
two foci coincide (thus any point on the circle is the same distance from the center). (b) For any closed gravitational orbit, m follows an elliptical path with M at one focus.
Kepler’s first law states this fact for planets orbiting the Sun.

Kepler’s Second Law

Each planet moves so that an imaginary line drawn from the Sun to the planet sweeps out equal areas in equal times (see Figure 6.30).

Kepler’s Third Law

The ratio of the squares of the periods of any two planets about the Sun is equal to the ratio of the cubes of their average distances from the Sun. In
equation form, this is

(6.55)T1
 2

T2
 2 =

r1
 3

r2
 3,

where T is the period (time for one orbit) and r is the average radius. This equation is valid only for comparing two small masses orbiting the same
large one. Most importantly, this is a descriptive equation only, giving no information as to the cause of the equality.
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Figure 6.30 The shaded regions have equal areas. It takes equal times for m to go from A to B, from C to D, and from E to F. The mass m moves fastest when it is closest

to M . Kepler’s second law was originally devised for planets orbiting the Sun, but it has broader validity.

Note again that while, for historical reasons, Kepler’s laws are stated for planets orbiting the Sun, they are actually valid for all bodies satisfying the
two previously stated conditions.

Example 6.7 Find the Time for One Orbit of an Earth Satellite

Given that the Moon orbits Earth each 27.3 d and that it is an average distance of 3.84×108 m from the center of Earth, calculate the period of
an artificial satellite orbiting at an average altitude of 1500 km above Earth’s surface.

Strategy

The period, or time for one orbit, is related to the radius of the orbit by Kepler’s third law, given in mathematical form in
T1

 2

T2
 2 =

r1
 3

r2
 3 . Let us use

the subscript 1 for the Moon and the subscript 2 for the satellite. We are asked to find T2 . The given information tells us that the orbital radius of

the Moon is r1 = 3.84×108 m , and that the period of the Moon is T1 = 27.3 d . The height of the artificial satellite above Earth’s surface is

given, and so we must add the radius of Earth (6380 km) to get r2 = (1500 + 6380) km = 7880 km . Now all quantities are known, and so

T2 can be found.

Solution

Kepler’s third law is

(6.56)T1
 2

T2
 2 =

r1
 3

r2
 3.

To solve for T2 , we cross-multiply and take the square root, yielding

(6.57)
T2

 2 = T1
 2 ⎛⎝

r2
r1
⎞
⎠

3

(6.58)
T2 = T1

⎛
⎝
r2
r1
⎞
⎠

3 / 2
.

Substituting known values yields

(6.59)

T2 = 27.3 d×24.0 h
d ×⎛⎝ 7880 km

3.84×105 km
⎞
⎠

3 / 2

= 1.93 h.
Discussion This is a reasonable period for a satellite in a fairly low orbit. It is interesting that any satellite at this altitude will orbit in the same
amount of time. This fact is related to the condition that the satellite’s mass is small compared with that of Earth.

People immediately search for deeper meaning when broadly applicable laws, like Kepler’s, are discovered. It was Newton who took the next giant
step when he proposed the law of universal gravitation. While Kepler was able to discover what was happening, Newton discovered that gravitational
force was the cause.
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Derivation of Kepler’s Third Law for Circular Orbits
We shall derive Kepler’s third law, starting with Newton’s laws of motion and his universal law of gravitation. The point is to demonstrate that the force
of gravity is the cause for Kepler’s laws (although we will only derive the third one).

Let us consider a circular orbit of a small mass m around a large mass M , satisfying the two conditions stated at the beginning of this section.
Gravity supplies the centripetal force to mass m . Starting with Newton’s second law applied to circular motion,

(6.60)
Fnet = mac = mv2

r .

The net external force on mass m is gravity, and so we substitute the force of gravity for Fnet :

(6.61)
GmM

r2 = mv2
r .

The mass m cancels, yielding

(6.62)GM
r = v2.

The fact that m cancels out is another aspect of the oft-noted fact that at a given location all masses fall with the same acceleration. Here we see
that at a given orbital radius r , all masses orbit at the same speed. (This was implied by the result of the preceding worked example.) Now, to get at

Kepler’s third law, we must get the period T into the equation. By definition, period T is the time for one complete orbit. Now the average speed v
is the circumference divided by the period—that is,

(6.63)v = 2πr
T .

Substituting this into the previous equation gives

(6.64)
GM

r = 4π2 r2

T 2 .

Solving for T 2 yields

(6.65)
T 2 = 4π2

GMr3.

Using subscripts 1 and 2 to denote two different satellites, and taking the ratio of the last equation for satellite 1 to satellite 2 yields

(6.66)T1
 2

T2
 2 =

r1
 3

r2
 3.

This is Kepler’s third law. Note that Kepler’s third law is valid only for comparing satellites of the same parent body, because only then does the mass
of the parent body M cancel.

Now consider what we get if we solve T 2 = 4π2

GMr3 for the ratio r3 / T 2 . We obtain a relationship that can be used to determine the mass M of a

parent body from the orbits of its satellites:

(6.67)r3

T 2 = G
4π2M.

If r and T are known for a satellite, then the mass M of the parent can be calculated. This principle has been used extensively to find the masses

of heavenly bodies that have satellites. Furthermore, the ratio r3 / T 2 should be a constant for all satellites of the same parent body (because

r3 / T 2 = GM / 4π2 ). (See Table 6.2).

It is clear from Table 6.2 that the ratio of r3 / T 2 is constant, at least to the third digit, for all listed satellites of the Sun, and for those of Jupiter. Small

variations in that ratio have two causes—uncertainties in the r and T data, and perturbations of the orbits due to other bodies. Interestingly, those
perturbations can be—and have been—used to predict the location of new planets and moons. This is another verification of Newton’s universal law
of gravitation.

Making Connections

Newton’s universal law of gravitation is modified by Einstein’s general theory of relativity, as we shall see in Particle Physics. Newton’s gravity is
not seriously in error—it was and still is an extremely good approximation for most situations. Einstein’s modification is most noticeable in
extremely large gravitational fields, such as near black holes. However, general relativity also explains such phenomena as small but long-known
deviations of the orbit of the planet Mercury from classical predictions.
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The Case for Simplicity
The development of the universal law of gravitation by Newton played a pivotal role in the history of ideas. While it is beyond the scope of this text to
cover that history in any detail, we note some important points. The definition of planet set in 2006 by the International Astronomical Union (IAU)
states that in the solar system, a planet is a celestial body that:

1. is in orbit around the Sun,

2. has sufficient mass to assume hydrostatic equilibrium and

3. has cleared the neighborhood around its orbit.

A non-satellite body fulfilling only the first two of the above criteria is classified as “dwarf planet.”

In 2006, Pluto was demoted to a ‘dwarf planet’ after scientists revised their definition of what constitutes a “true” planet.

Table 6.2 Orbital Data and Kepler’s Third Law

Parent Satellite Average orbital radius r(km) Period T(y) r3 / T2 (km3 / y2)

Earth Moon 3.84×105 0.07481 1.01×1018

Sun Mercury 5.79×107 0.2409 3.34×1024

Venus 1.082×108 0.6150 3.35×1024

Earth 1.496×108 1.000 3.35×1024

Mars 2.279×108 1.881 3.35×1024

Jupiter 7.783×108 11.86 3.35×1024

Saturn 1.427×109 29.46 3.35×1024

Neptune 4.497×109 164.8 3.35×1024

Pluto 5.90×109 248.3 3.33×1024

Jupiter Io 4.22×105 0.00485 (1.77 d) 3.19×1021

Europa 6.71×105 0.00972 (3.55 d) 3.20×1021

Ganymede 1.07×106 0.0196 (7.16 d) 3.19×1021

Callisto 1.88×106 0.0457 (16.19 d) 3.20×1021

The universal law of gravitation is a good example of a physical principle that is very broadly applicable. That single equation for the gravitational
force describes all situations in which gravity acts. It gives a cause for a vast number of effects, such as the orbits of the planets and moons in the
solar system. It epitomizes the underlying unity and simplicity of physics.

Before the discoveries of Kepler, Copernicus, Galileo, Newton, and others, the solar system was thought to revolve around Earth as shown in Figure
6.31(a). This is called the Ptolemaic view, for the Greek philosopher who lived in the second century AD. This model is characterized by a list of facts
for the motions of planets with no cause and effect explanation. There tended to be a different rule for each heavenly body and a general lack of
simplicity.

Figure 6.31(b) represents the modern or Copernican model. In this model, a small set of rules and a single underlying force explain not only all
motions in the solar system, but all other situations involving gravity. The breadth and simplicity of the laws of physics are compelling. As our
knowledge of nature has grown, the basic simplicity of its laws has become ever more evident.
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angular velocity:

arc length:

banked curve:

Coriolis force:

center of mass:

centrifugal force:

centripetal acceleration:

centripetal force:

fictitious force:

gravitational constant, G:

ideal angle:

ideal banking:

ideal speed:

microgravity:

Newton’s universal law of gravitation:

non-inertial frame of reference:

pit:

radians:

radius of curvature:

rotation angle:

ultracentrifuge:

uniform circular motion:

Figure 6.31 (a) The Ptolemaic model of the universe has Earth at the center with the Moon, the planets, the Sun, and the stars revolving about it in complex superpositions of
circular paths. This geocentric model, which can be made progressively more accurate by adding more circles, is purely descriptive, containing no hints as to what are the
causes of these motions. (b) The Copernican model has the Sun at the center of the solar system. It is fully explained by a small number of laws of physics, including Newton’s
universal law of gravitation.

Glossary
ω , the rate of change of the angle with which an object moves on a circular path

Δs , the distance traveled by an object along a circular path

the curve in a road that is sloping in a manner that helps a vehicle negotiate the curve

the fictitious force causing the apparent deflection of moving objects when viewed in a rotating frame of reference

the point where the entire mass of an object can be thought to be concentrated

a fictitious force that tends to throw an object off when the object is rotating in a non-inertial frame of reference

the acceleration of an object moving in a circle, directed toward the center

any net force causing uniform circular motion

a force having no physical origin

a proportionality factor used in the equation for Newton’s universal law of gravitation; it is a universal constant—that is,
it is thought to be the same everywhere in the universe

the angle at which a car can turn safely on a steep curve, which is in proportion to the ideal speed

the sloping of a curve in a road, where the angle of the slope allows the vehicle to negotiate the curve at a certain speed without
the aid of friction between the tires and the road; the net external force on the vehicle equals the horizontal centripetal force in the absence of
friction

the maximum safe speed at which a vehicle can turn on a curve without the aid of friction between the tire and the road

an environment in which the apparent net acceleration of a body is small compared with that produced by Earth at its surface

every particle in the universe attracts every other particle with a force along a line joining them; the force
is directly proportional to the product of their masses and inversely proportional to the square of the distance between them

an accelerated frame of reference

a tiny indentation on the spiral track moulded into the top of the polycarbonate layer of CD

a unit of angle measurement

radius of a circular path

the ratio of the arc length to the radius of curvature on a circular path:

Δθ = Δs
r

a centrifuge optimized for spinning a rotor at very high speeds

the motion of an object in a circular path at constant speed
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Section Summary

6.1 Rotation Angle and Angular Velocity
• Uniform circular motion is motion in a circle at constant speed. The rotation angle Δθ is defined as the ratio of the arc length to the radius of

curvature:

Δθ = Δs
r ,

where arc length Δs is distance traveled along a circular path and r is the radius of curvature of the circular path. The quantity Δθ is
measured in units of radians (rad), for which

2π rad = 360º= 1 revolution.
• The conversion between radians and degrees is 1 rad = 57.3º .

• Angular velocity ω is the rate of change of an angle,

ω = Δθ
Δt ,

where a rotation Δθ takes place in a time Δt . The units of angular velocity are radians per second (rad/s). Linear velocity v and angular
velocity ω are related by

v = rω or ω = v
r .

6.2 Centripetal Acceleration
• Centripetal acceleration ac is the acceleration experienced while in uniform circular motion. It always points toward the center of rotation. It is

perpendicular to the linear velocity v and has the magnitude

ac = v2
r ; ac = rω2.

• The unit of centripetal acceleration is m / s2 .

6.3 Centripetal Force
• Centripetal force Fc is any force causing uniform circular motion. It is a “center-seeking” force that always points toward the center of rotation.

It is perpendicular to linear velocity v and has magnitude

Fc = mac,
which can also be expressed as

Fc = mv2
r

or
Fc = mrω2

,

⎫

⎭
⎬
⎪
⎪

6.4 Fictitious Forces and Non-inertial Frames: The Coriolis Force
• Rotating and accelerated frames of reference are non-inertial.

• Fictitious forces, such as the Coriolis force, are needed to explain motion in such frames.

6.5 Newton’s Universal Law of Gravitation
• Newton’s universal law of gravitation: Every particle in the universe attracts every other particle with a force along a line joining them. The force

is directly proportional to the product of their masses and inversely proportional to the square of the distance between them. In equation form,
this is

F = GmM
r2 ,

where F is the magnitude of the gravitational force. G is the gravitational constant, given by G = 6.673×10–11 N ⋅ m2/kg2 .

• Newton’s law of gravitation applies universally.

6.6 Satellites and Kepler’s Laws: An Argument for Simplicity
• Kepler’s laws are stated for a small mass m orbiting a larger mass M in near-isolation. Kepler’s laws of planetary motion are then as follows:

Kepler’s first law

The orbit of each planet about the Sun is an ellipse with the Sun at one focus.

Kepler’s second law

Each planet moves so that an imaginary line drawn from the Sun to the planet sweeps out equal areas in equal times.

Kepler’s third law

The ratio of the squares of the periods of any two planets about the Sun is equal to the ratio of the cubes of their average distances from the
Sun:
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T1
 2

T2
 2 =

r1
 3

r2
 3,

where T is the period (time for one orbit) and r is the average radius of the orbit.

• The period and radius of a satellite’s orbit about a larger body M are related by

T 2 = 4π2

GMr3

or

r3

T 2 = G
4π2M.

Conceptual Questions

6.1 Rotation Angle and Angular Velocity
1. There is an analogy between rotational and linear physical quantities. What rotational quantities are analogous to distance and velocity?

6.2 Centripetal Acceleration
2. Can centripetal acceleration change the speed of circular motion? Explain.

6.3 Centripetal Force
3. If you wish to reduce the stress (which is related to centripetal force) on high-speed tires, would you use large- or small-diameter tires? Explain.

4. Define centripetal force. Can any type of force (for example, tension, gravitational force, friction, and so on) be a centripetal force? Can any
combination of forces be a centripetal force?

5. If centripetal force is directed toward the center, why do you feel that you are ‘thrown’ away from the center as a car goes around a curve? Explain.

6. Race car drivers routinely cut corners as shown in Figure 6.32. Explain how this allows the curve to be taken at the greatest speed.

Figure 6.32 Two paths around a race track curve are shown. Race car drivers will take the inside path (called cutting the corner) whenever possible because it allows them to
take the curve at the highest speed.

7. A number of amusement parks have rides that make vertical loops like the one shown in Figure 6.33. For safety, the cars are attached to the rails
in such a way that they cannot fall off. If the car goes over the top at just the right speed, gravity alone will supply the centripetal force. What other
force acts and what is its direction if:

(a) The car goes over the top at faster than this speed?

(b)The car goes over the top at slower than this speed?
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Figure 6.33 Amusement rides with a vertical loop are an example of a form of curved motion.

8. What is the direction of the force exerted by the car on the passenger as the car goes over the top of the amusement ride pictured in Figure 6.33
under the following circumstances:

(a) The car goes over the top at such a speed that the gravitational force is the only force acting?

(b) The car goes over the top faster than this speed?

(c) The car goes over the top slower than this speed?

9. As a skater forms a circle, what force is responsible for making her turn? Use a free body diagram in your answer.

10. Suppose a child is riding on a merry-go-round at a distance about halfway between its center and edge. She has a lunch box resting on wax
paper, so that there is very little friction between it and the merry-go-round. Which path shown in Figure 6.34 will the lunch box take when she lets
go? The lunch box leaves a trail in the dust on the merry-go-round. Is that trail straight, curved to the left, or curved to the right? Explain your answer.

Figure 6.34 A child riding on a merry-go-round releases her lunch box at point P. This is a view from above the clockwise rotation. Assuming it slides with negligible friction, will
it follow path A, B, or C, as viewed from Earth’s frame of reference? What will be the shape of the path it leaves in the dust on the merry-go-round?

11. Do you feel yourself thrown to either side when you negotiate a curve that is ideally banked for your car’s speed? What is the direction of the
force exerted on you by the car seat?

12. Suppose a mass is moving in a circular path on a frictionless table as shown in figure. In the Earth’s frame of reference, there is no centrifugal
force pulling the mass away from the centre of rotation, yet there is a very real force stretching the string attaching the mass to the nail. Using
concepts related to centripetal force and Newton’s third law, explain what force stretches the string, identifying its physical origin.
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Figure 6.35 A mass attached to a nail on a frictionless table moves in a circular path. The force stretching the string is real and not fictional. What is the physical origin of the
force on the string?

6.4 Fictitious Forces and Non-inertial Frames: The Coriolis Force
13. When a toilet is flushed or a sink is drained, the water (and other material) begins to rotate about the drain on the way down. Assuming no initial
rotation and a flow initially directly straight toward the drain, explain what causes the rotation and which direction it has in the northern hemisphere.
(Note that this is a small effect and in most toilets the rotation is caused by directional water jets.) Would the direction of rotation reverse if water were
forced up the drain?

14. Is there a real force that throws water from clothes during the spin cycle of a washing machine? Explain how the water is removed.

15. In one amusement park ride, riders enter a large vertical barrel and stand against the wall on its horizontal floor. The barrel is spun up and the
floor drops away. Riders feel as if they are pinned to the wall by a force something like the gravitational force. This is a fictitious force sensed and
used by the riders to explain events in the rotating frame of reference of the barrel. Explain in an inertial frame of reference (Earth is nearly one) what
pins the riders to the wall, and identify all of the real forces acting on them.

16. Action at a distance, such as is the case for gravity, was once thought to be illogical and therefore untrue. What is the ultimate determinant of the
truth in physics, and why was this action ultimately accepted?

17. Two friends are having a conversation. Anna says a satellite in orbit is in freefall because the satellite keeps falling toward Earth. Tom says a

satellite in orbit is not in freefall because the acceleration due to gravity is not 9.80 m/s2 . Who do you agree with and why?

18. A non-rotating frame of reference placed at the center of the Sun is very nearly an inertial one. Why is it not exactly an inertial frame?

6.5 Newton’s Universal Law of Gravitation
19. Action at a distance, such as is the case for gravity, was once thought to be illogical and therefore untrue. What is the ultimate determinant of the
truth in physics, and why was this action ultimately accepted?

20. Two friends are having a conversation. Anna says a satellite in orbit is in freefall because the satellite keeps falling toward Earth. Tom says a

satellite in orbit is not in freefall because the acceleration due to gravity is not 9.80 m/s2 . Who do you agree with and why?

21. Draw a free body diagram for a satellite in an elliptical orbit showing why its speed increases as it approaches its parent body and decreases as it
moves away.

22. Newton’s laws of motion and gravity were among the first to convincingly demonstrate the underlying simplicity and unity in nature. Many other
examples have since been discovered, and we now expect to find such underlying order in complex situations. Is there proof that such order will
always be found in new explorations?

6.6 Satellites and Kepler’s Laws: An Argument for Simplicity
23. In what frame(s) of reference are Kepler’s laws valid? Are Kepler’s laws purely descriptive, or do they contain causal information?
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Problems & Exercises

6.1 Rotation Angle and Angular Velocity
24. Semi-trailer trucks have an odometer on one hub of a trailer wheel.
The hub is weighted so that it does not rotate, but it contains gears to
count the number of wheel revolutions—it then calculates the distance
traveled. If the wheel has a 1.15 m diameter and goes through 200,000
rotations, how many kilometers should the odometer read?

25. Microwave ovens rotate at a rate of about 6 rev/min. What is this in
revolutions per second? What is the angular velocity in radians per
second?

26. An automobile with 0.260 m radius tires travels 80,000 km before
wearing them out. How many revolutions do the tires make, neglecting
any backing up and any change in radius due to wear?

27. (a) What is the period of rotation of Earth in seconds? (b) What is the
angular velocity of Earth? (c) Given that Earth has a radius of

6.4×106 m at its equator, what is the linear velocity at Earth’s surface?

28. A baseball pitcher brings his arm forward during a pitch, rotating the
forearm about the elbow. If the velocity of the ball in the pitcher’s hand is
35.0 m/s and the ball is 0.300 m from the elbow joint, what is the angular
velocity of the forearm?

29. In lacrosse, a ball is thrown from a net on the end of a stick by
rotating the stick and forearm about the elbow. If the angular velocity of
the ball about the elbow joint is 30.0 rad/s and the ball is 1.30 m from the
elbow joint, what is the velocity of the ball?

30. A truck with 0.420-m-radius tires travels at 32.0 m/s. What is the
angular velocity of the rotating tires in radians per second? What is this in
rev/min?

31. Integrated Concepts When kicking a football, the kicker rotates his
leg about the hip joint.

(a) If the velocity of the tip of the kicker’s shoe is 35.0 m/s and the hip
joint is 1.05 m from the tip of the shoe, what is the shoe tip’s angular
velocity?

(b) The shoe is in contact with the initially stationary 0.500 kg football for
20.0 ms. What average force is exerted on the football to give it a velocity
of 20.0 m/s?

(c) Find the maximum range of the football, neglecting air resistance.

32. Construct Your Own Problem

Consider an amusement park ride in which participants are rotated about
a vertical axis in a cylinder with vertical walls. Once the angular velocity
reaches its full value, the floor drops away and friction between the walls
and the riders prevents them from sliding down. Construct a problem in
which you calculate the necessary angular velocity that assures the
riders will not slide down the wall. Include a free body diagram of a single
rider. Among the variables to consider are the radius of the cylinder and
the coefficients of friction between the riders’ clothing and the wall.

6.2 Centripetal Acceleration
33. A fairground ride spins its occupants inside a flying saucer-shaped
container. If the horizontal circular path the riders follow has an 8.00 m
radius, at how many revolutions per minute will the riders be subjected to
a centripetal acceleration whose magnitude is 1.50 times that due to
gravity?

34. A runner taking part in the 200 m dash must run around the end of a
track that has a circular arc with a radius of curvature of 30 m. If he
completes the 200 m dash in 23.2 s and runs at constant speed
throughout the race, what is the magnitude of his centripetal acceleration
as he runs the curved portion of the track?

35. Taking the age of Earth to be about 4×109 years and assuming its

orbital radius of 1.5 ×1011 has not changed and is circular, calculate
the approximate total distance Earth has traveled since its birth (in a
frame of reference stationary with respect to the Sun).

36. The propeller of a World War II fighter plane is 2.30 m in diameter.

(a) What is its angular velocity in radians per second if it spins at 1200
rev/min?

(b) What is the linear speed of its tip at this angular velocity if the plane is
stationary on the tarmac?

(c) What is the centripetal acceleration of the propeller tip under these
conditions? Calculate it in meters per second squared and convert to
multiples of g .

37. An ordinary workshop grindstone has a radius of 7.50 cm and rotates
at 6500 rev/min.

(a) Calculate the magnitude of the centripetal acceleration at its edge in
meters per second squared and convert it to multiples of g .

(b) What is the linear speed of a point on its edge?

38. Helicopter blades withstand tremendous stresses. In addition to
supporting the weight of a helicopter, they are spun at rapid rates and
experience large centripetal accelerations, especially at the tip.

(a) Calculate the magnitude of the centripetal acceleration at the tip of a
4.00 m long helicopter blade that rotates at 300 rev/min.

(b) Compare the linear speed of the tip with the speed of sound (taken to
be 340 m/s).

39. Olympic ice skaters are able to spin at about 5 rev/s.

(a) What is their angular velocity in radians per second?

(b) What is the centripetal acceleration of the skater’s nose if it is 0.120 m
from the axis of rotation?

(c) An exceptional skater named Dick Button was able to spin much
faster in the 1950s than anyone since—at about 9 rev/s. What was the
centripetal acceleration of the tip of his nose, assuming it is at 0.120 m
radius?

(d) Comment on the magnitudes of the accelerations found. It is reputed
that Button ruptured small blood vessels during his spins.

40. What percentage of the acceleration at Earth’s surface is the
acceleration due to gravity at the position of a satellite located 300 km
above Earth?

41. Verify that the linear speed of an ultracentrifuge is about 0.50 km/s,
and Earth in its orbit is about 30 km/s by calculating:

(a) The linear speed of a point on an ultracentrifuge 0.100 m from its
center, rotating at 50,000 rev/min.

(b) The linear speed of Earth in its orbit about the Sun (use data from the
text on the radius of Earth’s orbit and approximate it as being circular).

42. A rotating space station is said to create “artificial gravity”—a loosely-
defined term used for an acceleration that would be crudely similar to
gravity. The outer wall of the rotating space station would become a floor
for the astronauts, and centripetal acceleration supplied by the floor
would allow astronauts to exercise and maintain muscle and bone
strength more naturally than in non-rotating space environments. If the
space station is 200 m in diameter, what angular velocity would produce

an “artificial gravity” of 9.80 m/s2 at the rim?

43. At takeoff, a commercial jet has a 60.0 m/s speed. Its tires have a
diameter of 0.850 m.

(a) At how many rev/min are the tires rotating?

(b) What is the centripetal acceleration at the edge of the tire?

(c) With what force must a determined 1.00×10−15 kg bacterium cling

to the rim?

(d) Take the ratio of this force to the bacterium’s weight.

44. Integrated Concepts

Riders in an amusement park ride shaped like a Viking ship hung from a
large pivot are rotated back and forth like a rigid pendulum. Sometime
near the middle of the ride, the ship is momentarily motionless at the top
of its circular arc. The ship then swings down under the influence of
gravity.
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(a) What is the magnitude of the centripetal acceleration at the bottom of
the arc?

(b) Draw a free-body diagram of the forces acting on a rider at the bottom
of the arc.

(c) Find the magnitude of the force exerted by the ride on a 60.0 kg rider
and compare it to her weight.

(d) Discuss whether the answer seems reasonable.

45. Unreasonable Results

A mother pushes her child on a swing so that his speed is 9.00 m/s at the
lowest point of his path. The swing is suspended 2.00 m above the child’s
center of mass.

(a) What is the magnitude of the centripetal acceleration of the child at
the low point?

(b) What is the magnitude of the force the child exerts on the seat if his
mass is 18.0 kg?

(c) What is unreasonable about these results?

(d) Which premises are unreasonable or inconsistent?

6.3 Centripetal Force
46. (a) A 22.0 kg child is riding a playground merry-go-round that is
rotating at 40.0 rev/min. What centripetal force must she exert to stay on
if she is 1.25 m from its center?

(b) What centripetal force does she need to stay on an amusement park
merry-go-round that rotates at 3.00 rev/min if she is 8.00 m from its
center?

(c) Compare each force with her weight.

47. Calculate the centripetal force on the end of a 100 m (radius) wind
turbine blade that is rotating at 0.5 rev/s. Assume the mass is 4 kg.

48. What is the ideal banking angle for a gentle turn of 1.20 km radius on
a highway with a 105 km/h speed limit (about 65 mi/h), assuming
everyone travels at the limit?

49. What is the ideal speed to take a 100 m radius curve banked at a
20.0° angle?

50. (a) What is the radius of a bobsled turn banked at 75.0° and taken at
30.0 m/s, assuming it is ideally banked?

(b) Calculate the centripetal acceleration.

(c) Does this acceleration seem large to you?

51. Part of riding a bicycle involves leaning at the correct angle when
making a turn, as seen in Figure 6.36. To be stable, the force exerted by
the ground must be on a line going through the center of gravity. The
force on the bicycle wheel can be resolved into two perpendicular
components—friction parallel to the road (this must supply the centripetal
force), and the vertical normal force (which must equal the system’s
weight).

(a) Show that θ (as defined in the figure) is related to the speed v and
radius of curvature r of the turn in the same way as for an ideally

banked roadway—that is, θ = tan–1 v2 / rg

(b) Calculate θ for a 12.0 m/s turn of radius 30.0 m (as in a race).

Figure 6.36 A bicyclist negotiating a turn on level ground must lean at the correct
angle—the ability to do this becomes instinctive. The force of the ground on the wheel
needs to be on a line through the center of gravity. The net external force on the
system is the centripetal force. The vertical component of the force on the wheel
cancels the weight of the system while its horizontal component must supply the

centripetal force. This process produces a relationship among the angle θ , the

speed v , and the radius of curvature r of the turn similar to that for the ideal

banking of roadways.

52. A large centrifuge, like the one shown in Figure 6.37(a), is used to
expose aspiring astronauts to accelerations similar to those experienced
in rocket launches and atmospheric reentries.

(a) At what angular velocity is the centripetal acceleration 10 g if the

rider is 15.0 m from the center of rotation?

(b) The rider’s cage hangs on a pivot at the end of the arm, allowing it to
swing outward during rotation as shown in Figure 6.37(b). At what angle
θ below the horizontal will the cage hang when the centripetal

acceleration is 10 g ? (Hint: The arm supplies centripetal force and

supports the weight of the cage. Draw a free body diagram of the forces
to see what the angle θ should be.)
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Figure 6.37 (a) NASA centrifuge used to subject trainees to accelerations similar to
those experienced in rocket launches and reentries. (credit: NASA) (b) Rider in cage
showing how the cage pivots outward during rotation. This allows the total force
exerted on the rider by the cage to be along its axis at all times.

53. Integrated Concepts

If a car takes a banked curve at less than the ideal speed, friction is
needed to keep it from sliding toward the inside of the curve (a real
problem on icy mountain roads). (a) Calculate the ideal speed to take a
100 m radius curve banked at 15.0º. (b) What is the minimum coefficient
of friction needed for a frightened driver to take the same curve at 20.0
km/h?

54. Modern roller coasters have vertical loops like the one shown in
Figure 6.38. The radius of curvature is smaller at the top than on the
sides so that the downward centripetal acceleration at the top will be
greater than the acceleration due to gravity, keeping the passengers
pressed firmly into their seats. What is the speed of the roller coaster at
the top of the loop if the radius of curvature there is 15.0 m and the
downward acceleration of the car is 1.50 g?

Figure 6.38 Teardrop-shaped loops are used in the latest roller coasters so that the
radius of curvature gradually decreases to a minimum at the top. This means that the
centripetal acceleration builds from zero to a maximum at the top and gradually
decreases again. A circular loop would cause a jolting change in acceleration at entry,
a disadvantage discovered long ago in railroad curve design. With a small radius of
curvature at the top, the centripetal acceleration can more easily be kept greater than
g so that the passengers do not lose contact with their seats nor do they need seat

belts to keep them in place.

55. Unreasonable Results

(a) Calculate the minimum coefficient of friction needed for a car to
negotiate an unbanked 50.0 m radius curve at 30.0 m/s.

(b) What is unreasonable about the result?

(c) Which premises are unreasonable or inconsistent?

6.5 Newton’s Universal Law of Gravitation
56. (a) Calculate Earth’s mass given the acceleration due to gravity at the

North Pole is 9.830 m/s2 and the radius of the Earth is 6371 km from
pole to pole.

(b) Compare this with the accepted value of 5.979×1024 kg .

57. (a) Calculate the magnitude of the acceleration due to gravity on the
surface of Earth due to the Moon.

(b) Calculate the magnitude of the acceleration due to gravity at Earth
due to the Sun.

(c) Take the ratio of the Moon’s acceleration to the Sun’s and comment
on why the tides are predominantly due to the Moon in spite of this
number.

58. (a) What is the acceleration due to gravity on the surface of the
Moon?

(b) On the surface of Mars? The mass of Mars is 6.418×1023 kg and

its radius is 3.38×106 m .

59. (a) Calculate the acceleration due to gravity on the surface of the
Sun.

(b) By what factor would your weight increase if you could stand on the
Sun? (Never mind that you cannot.)

60. The Moon and Earth rotate about their common center of mass,
which is located about 4700 km from the center of Earth. (This is 1690
km below the surface.)

(a) Calculate the magnitude of the acceleration due to the Moon’s gravity
at that point.

(b) Calculate the magnitude of the centripetal acceleration of the center
of Earth as it rotates about that point once each lunar month (about 27.3
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d) and compare it with the acceleration found in part (a). Comment on
whether or not they are equal and why they should or should not be.

61. Solve part (b) of Example 6.6 using ac = v2 / r .

62. Astrology, that unlikely and vague pseudoscience, makes much of the
position of the planets at the moment of one’s birth. The only known force
a planet exerts on Earth is gravitational.

(a) Calculate the magnitude of the gravitational force exerted on a 4.20
kg baby by a 100 kg father 0.200 m away at birth (he is assisting, so he is
close to the child).

(b) Calculate the magnitude of the force on the baby due to Jupiter if it is

at its closest distance to Earth, some 6.29×1011 m away. How does
the force of Jupiter on the baby compare to the force of the father on the
baby? Other objects in the room and the hospital building also exert
similar gravitational forces. (Of course, there could be an unknown force
acting, but scientists first need to be convinced that there is even an
effect, much less that an unknown force causes it.)

63. The existence of the dwarf planet Pluto was proposed based on
irregularities in Neptune’s orbit. Pluto was subsequently discovered near
its predicted position. But it now appears that the discovery was
fortuitous, because Pluto is small and the irregularities in Neptune’s orbit
were not well known. To illustrate that Pluto has a minor effect on the
orbit of Neptune compared with the closest planet to Neptune:

(a) Calculate the acceleration due to gravity at Neptune due to Pluto

when they are 4.50×1012 m apart, as they are at present. The mass of

Pluto is 1.4×1022 kg .

(b) Calculate the acceleration due to gravity at Neptune due to Uranus,

presently about 2.50×1012 m apart, and compare it with that due to

Pluto. The mass of Uranus is 8.62×1025 kg .

64. (a) The Sun orbits the Milky Way galaxy once each 2.60 x 108 y ,

with a roughly circular orbit averaging 3.00 x 104 light years in radius.
(A light year is the distance traveled by light in 1 y.) Calculate the
centripetal acceleration of the Sun in its galactic orbit. Does your result
support the contention that a nearly inertial frame of reference can be
located at the Sun?

(b) Calculate the average speed of the Sun in its galactic orbit. Does the
answer surprise you?

65. Unreasonable Result

A mountain 10.0 km from a person exerts a gravitational force on him
equal to 2.00% of his weight.

(a) Calculate the mass of the mountain.

(b) Compare the mountain’s mass with that of Earth.

(c) What is unreasonable about these results?

(d) Which premises are unreasonable or inconsistent? (Note that
accurate gravitational measurements can easily detect the effect of
nearby mountains and variations in local geology.)

6.6 Satellites and Kepler’s Laws: An Argument for
Simplicity
66. A geosynchronous Earth satellite is one that has an orbital period of
precisely 1 day. Such orbits are useful for communication and weather
observation because the satellite remains above the same point on Earth
(provided it orbits in the equatorial plane in the same direction as Earth’s
rotation). Calculate the radius of such an orbit based on the data for the
moon in Table 6.2.

67. Calculate the mass of the Sun based on data for Earth’s orbit and
compare the value obtained with the Sun’s actual mass.

68. Find the mass of Jupiter based on data for the orbit of one of its
moons, and compare your result with its actual mass.

69. Find the ratio of the mass of Jupiter to that of Earth based on data in
Table 6.2.

70. Astronomical observations of our Milky Way galaxy indicate that it has

a mass of about 8.0×1011 solar masses. A star orbiting on the galaxy’s

periphery is about 6.0×104 light years from its center. (a) What should

the orbital period of that star be? (b) If its period is 6.0×107 instead,
what is the mass of the galaxy? Such calculations are used to imply the
existence of “dark matter” in the universe and have indicated, for
example, the existence of very massive black holes at the centers of
some galaxies.

71. Integrated Concepts

Space debris left from old satellites and their launchers is becoming a
hazard to other satellites. (a) Calculate the speed of a satellite in an orbit
900 km above Earth’s surface. (b) Suppose a loose rivet is in an orbit of
the same radius that intersects the satellite’s orbit at an angle of 90º
relative to Earth. What is the velocity of the rivet relative to the satellite
just before striking it? (c) Given the rivet is 3.00 mm in size, how long will
its collision with the satellite last? (d) If its mass is 0.500 g, what is the
average force it exerts on the satellite? (e) How much energy in joules is
generated by the collision? (The satellite’s velocity does not change
appreciably, because its mass is much greater than the rivet’s.)

72. Unreasonable Results

(a) Based on Kepler’s laws and information on the orbital characteristics
of the Moon, calculate the orbital radius for an Earth satellite having a
period of 1.00 h. (b) What is unreasonable about this result? (c) What is
unreasonable or inconsistent about the premise of a 1.00 h orbit?

73. Construct Your Own Problem

On February 14, 2000, the NEAR spacecraft was successfully inserted
into orbit around Eros, becoming the first artificial satellite of an asteroid.
Construct a problem in which you determine the orbital speed for a
satellite near Eros. You will need to find the mass of the asteroid and
consider such things as a safe distance for the orbit. Although Eros is not
spherical, calculate the acceleration due to gravity on its surface at a
point an average distance from its center of mass. Your instructor may
also wish to have you calculate the escape velocity from this point on
Eros.
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